	SESSION
	APRIL 2025

	PROGRAM
	BACHELOR OF COMPUTER APPLICATIONS (BCA)

	SEMESTER
	II

	COURSE CODE & NAME
	[bookmark: _GoBack]DCA1210 OBJECT-ORIENTED PROGRAMMING USING C++

	
	

	
	

Set-I

Q1. Describe the main differences between procedural programming in C and object-oriented programming in C++.	10 	
Ans 1.
Main Differences Between Procedural Programming in C and Object-Oriented Programming in C++
Programming Paradigms
Programming languages adopt different paradigms to structure and organize code. C is a procedural programming language that focuses on functions and procedures, while C++ is an object-oriented language designed to handle complexity using the concept of objects and classes. Understanding their differences helps in choosing the right approach for various programming scenarios.
Conceptual Differences
The most fundamental difference between C and C++ lies in their design philosophy. C follows a top-down approach where the primary focus is on functions and the sequence of actions, often
Its Half solved only
Buy Complete assignment from us
Price – 190/ assignment
MUJ Manipal University Complete SolvedAssignments MARCH 2025
buy cheap assignment help online from us easily
we are here to help you with the best and cheap help
Contact No – 8791514139 (WhatsApp)
OR
Mail us- bestassignment247@gmail.com
Our website - www.assignmentsupport.in

Q2. Define an inline function and explain its advantages. 10 	
Ans 2.
Understanding Inline Functions
An inline function in C++ is a function where the compiler attempts to expand the function body at the point of each function call instead of performing a traditional call. This is done using the inline keyword. It is particularly useful for small, frequently used functions where the overhead of calling a function can impact performance.
How Inline Functions Work
When a function is marked as inline, the compiler replaces the function call with the actual code

Q3. Explain the concept of exception handling in C++ and its necessity. Discuss the roles of try, throw, and catch in the exception handling mechanism.		
Ans 3.
Concept of Exception Handling in C++ and the Roles of try, throw, and catch
Exception Handling in C++
Exception handling is a crucial feature in C++ that allows a program to deal with unexpected errors or unusual situations that occur during runtime. Instead of crashing the program or producing incorrect results, exception handling enables the program to detect, handle, and recover from these errors gracefully. This is especially important for creating robust, secure, and

Set-II

Q4. Describe basic programming using streams in C++. Include the process of creating, connecting, and disconnecting streams, and provide a simple example program. 10
Ans 4.
Basic Programming Using Streams in C++ with Process and Example
Streams in C++
In C++, streams are used to perform input and output operations. A stream is a flow of data from a source to a destination. The input stream reads data into a program, while the output stream sends data out of the program. C++ provides the iostream library that includes classes like istream for input and ostream for output, enabling developers to manage input and output operations efficiently.
Process of Creating and Connecting Streams
To perform file operations, C++ uses fstream, which includes ifstream (input file stream),

Q5. What are access specifiers in C++? Provide examples to demonstrate the use of each access specifier in a class. 10 	
Ans 5.
Access Specifiers in C++ with Examples
Access Specifiers
Access specifiers in C++ are keywords used to define the visibility and accessibility of class members (variables and functions). They control how the members of a class can be accessed in a program. The three main access specifiers in C++ are public, private, and protected. Using access specifiers allows developers to implement the principle of data encapsulation, which is a key concept in object-oriented programming.
Public Access Specifier
The public access specifier allows class members to be accessible from anywhere in the

Q6. Explain the concept of operator overloading in C++.
Ans 6.	
Operator Overloading
Operator overloading is a feature in C++ that allows existing operators to be redefined so that they can work with user-defined data types, such as objects of a class. This improves code readability and makes operations involving class objects more intuitive. It is a type of polymorphism where the same operator behaves differently depending on its operands.
Purpose and Need for Operator Overloading
In C++, built-in data types like int or float can be manipulated using arithmetic, relational, and logical operators. However, these operators don’t work with user-defined types by default. Operator overloading solves this limitation by allowing developers to redefine how operators

